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Abstract
Parabosonic algebra in finite or infinite degrees of freedom is considered as
a Z2-graded associative algebra, and is shown to be a Z2-graded (or super)
Hopf algebra. The super-Hopf algebraic structure of the parabosonic algebra
is established directly without appealing to its relation to the osp(1/2n) Lie
superalgebraic structure. The notion of super-Hopf algebra is equivalently
described as a Hopf algebra in the braided monoidal category CZ2M. The
bosonization technique for switching a Hopf algebra in the braided monoidal
category HM (where H is a quasitriangular Hopf algebra) into an ordinary Hopf
algebra is reviewed. In this paper, we prove that for the parabosonic algebra PB,

beyond the application of the bosonization technique to the original super-Hopf
algebra, a bosonization-like construction is also achieved using two operators,
related to the parabosonic total number operator. Both techniques switch the
same super-Hopf algebra PB to an ordinary Hopf algebra, thus producing two
different variants of PB, with an ordinary Hopf structure.

PACS numbers: 02.10.Hh, 02.10.De
Mathematics Subject Classification: 16S40, 16W30, 57T05

1. Introduction

Parabosonic algebra has a long history both in theoretical and mathematical physics. Although
formally introduced in the fifties by Green [10], Greenberg–Messiah [11] and Volkov [41]
in the context of second quantization, its history traces back to the fundamental conceptual
problems of quantum mechanics; in particular to Wigner’s approach to first quantization [42].
In quantum mechanics, we consider a unital associative non-commutative algebra, generated
in terms of the generators pi, qi, I, i = 1, . . . , n and relations (we have set h̄ = 1):

[qi, pj ] = iδij I, [qi, qj ] = [pi, pj ] = 0 (1)
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where I is of course the unity of the algebra and [x, y] stands for xy − yx. The states of the
system are vectors of a Hilbert space, where the elements of the above-mentioned algebra act.
The dynamics is determined by the Heisenberg equations of motion (we have set h̄ = 1):

i
dqi

dt
= [qi,H ], i

dpi

dt
= [pi,H ]. (2)

Relations (1) are known in the physical literature as the Weyl algebra, or the Heisenberg–Weyl
algebra or more commonly as the canonical commutation relations often abbreviated as CCR.
Their central importance for the quantization procedure lies in the fact that if one accepts the
algebraic relations (1) together with the quantum-dynamical equations (2) then it is an easy
matter (see [6]) to extract the classical Hamiltonian equations of motion while on the other
hand the acceptance of the classical Hamiltonian equations together with (1) reproduces the
quantum dynamics exactly as described by (2). We do not consider arbitrary Hamiltonians of
course but functions of the form H = ∑n

i=1 p2
i + V (q1, . . . , qn) which however are general

enough for simple physical systems. In this way, the CCR emerge as a fundamental link
between the classical and the quantum description of the dynamics.

For technical reasons, it is common to use—instead of the variables pi, qi—the linear
combinations:

b+
j = 1√

2
(qj − ipj ), b−

j = 1√
2
(qj + ipj )

for j = 1, . . . , n in terms of which (1) become[
b−

i , b+
j

] = δij I,
[
b−

i , b−
j

] = [
b+

i , b
+
j

] = 0 (3)

for i, j = 1, . . . , n. These latter relations are usually called the bosonic algebra (of n bosons),
and in the case of the infinite degrees of freedom i, j = 1, 2, . . . they become the starting
point of the free field theory (i.e., second quantization).

In 1950, E P Wigner in a two-page publication [42] noted that what the above approach
implies is that the CCR (1) are sufficient conditions—but not necessary—for the equivalence
between the classical Hamiltonian equations and the Heisenberg quantum-dynamical
equations (2). In a kind of reversing the problem, Wigner posed the question of looking
for necessary conditions for the simultaneous fulfillment of classical and quantum-dynamical
equations. Working with the simplest example of a single, one-dimensional harmonic
oscillator, he stated an infinite set of solutions for the above-mentioned problem. It is worth
noting that a particular irreducible representation of the CCR was included as one special case
among Wigner’s infinite solutions.

A few years later in 1953, Green in his celebrated paper [10] introduced the parabosonic
algebra (in possibly infinite degrees of freedom), by means of generators and relations:[

B−
m,

{
B+

k , B−
l

}] = 2δkmB−
l[

B−
m,

{
B−

k , B−
l

}] = 0[
B+

m,
{
B−

k , B−
l

}] = −2δlmB−
k − 2δkmB−

l

(4)

k, l,m = 1, 2, . . . and {x, y} stands for xy + yx. Green was primarily interested in field
theoretic implications of the above-mentioned algebra, in the sense that he considered it as
an alternative starting point for the second quantization problem, generalizing (3). However,
despite his original motivation he was the first to realize—see also [28]—that Wigner’s infinite
solutions were nothing else but inequivalent irreducible representations of the parabosonic
algebra (4). (See also the discussion in [30].)

This paper consists logically of two parts. The first part includes sections 2–4. The
basic elements for the structure parabosonic algebra are presented. In section 2, we state the
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definition and derive basic properties of the parabosonic algebra in infinite degrees of freedom.
The parabosonic algebra is considered to be a Z2-graded associative algebra with an infinite set
of (odd) generators B±

i for i = 1, 2, . . . . Its Z2-grading is inherited by the natural Z2-grading
of the tensor algebra. The notions of Z2-graded algebra and Z2-graded tensor products [2]
are discussed as a special examples of the more general and modern notions of G-module
algebras (G: a finite Abelian group) and of braiding in monoidal categories [23, 24, 27]. In
section 3, the notion of the super-Hopf algebra is presented in connection with the non-trivial
quasitriangular structure of the CZ2 group Hopf algebra and the braided monoidal category
of its representations CZ2M. The super-Hopf algebraic structure of the parabosonic algebra
is established, without appealing to its Lie superalgebraic structure, and this is the central
result of this part of the paper. Let us remark here in section 4, for the sake of completeness,
well-known results regarding the Lie superalgebraic structure of the parabosonic algebra in
finite degrees of freedom are reviewed.

The second part of the paper consists of section 5. We begin the section with a review of the
bosonization technique for switching a Hopf algebra A in a braided monoidal category C into an
ordinary Hopf algebra. Although we do not present the method in its full generality (see [22]),
we give sufficient details for its application in a much more general class of problems than those
involved in the ‘super’ or even in the G-graded (G finite and Abelian) case: we consider the
case of a Hopf algebra in the braided monoidal category HM where H is some quasitriangular
Hopf algebra, and explain in detail how we can construct an ordinary Hopf algebra out of
it. The construction is achieved by means of a smash product algebra A � H, and uses older
results [26, 36], which guarantee the compatibility between the algebraic and the coalgebraic
structure, in order for a smash product to be a Hopf algebra. The construction is such that the
(braided) modules of the original (braided) Hopf algebra A and the (ordinary) modules of the
‘bosonized’ (ordinary) Hopf algebra A � H are in a bijective correspondence, providing thus
an equivalence of categories. We apply the method in the case of the parabosonic algebra, i.e.
the case for which H = CZ2 equipped with its non-trivial quasitriangular structure, producing
a ‘variant’ of the parabosonic algebra. This variant PB � CZ2, which we will denote by PB(g),

is a smash product Hopf algebra between the parabosonic super-Hopf algebra PB and the
group Hopf algebra CZ2, and it is a Hopf algebra in the ordinary sense (and not in the ‘super’
sense). We explicitly state the structure maps (multiplication, comultiplication, counity and
the antipode) for the (ordinary) Hopf algebraic structure of PB(g). Finally one more variant
of the bosonization for the parabosonic algebra is presented, which achieves the same object
with the bosonization technique. We construct an algebra PB(K±), which is little ‘bigger’ than
the parabosonic algebra PB or its bosonized form PB(g) and we establish its (ordinary) Hopf
algebraic structure. So we prove that the bosonization technique is not unique.

In what follows, all vector spaces and algebras and all tensor products will be considered
over the field of complex numbers. Whenever the symbol i enters a formula in another place
than an index, it always denotes the imaginary unit i2 = −1. Furthermore, whenever formulae
from physics enter the text, we use the traditional convention: h̄ = m = ω = 1. Finally, the
Sweedler’s notation for the comultiplication is freely used throughout the text.

2. Super-algebraic structure of Parabosons

The parabosonic algebra was originally defined in terms of generators and relations by Green
[10] and Greenberg–Messiah [11]. We begin with restating their definition, in a modern
algebraic context. Let us consider the vector space VX freely generated by the elements:
X+

i , X−
j , i, j = 1, 2, . . . . Let T (VX) denote the tensor algebra of VX:

3
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T (VX) =
⊕
n�0

T n(VX)

where T 0(VX) = C, T 1(VX) = VX and for n � 2: T n(VX) = VX ⊗ · · · ⊗ VX the nth
tensor power of VX. It is well known [2] that T (VX) is—up to isomorphism—the free algebra
generated by the elements X+

i , X−
j (i, j = 1, 2, . . .) of the basis of VX or equivalently the non-

commutative polynomial algebra generated over the indeterminates X+
i , X−

j (i, j = 1, 2, . . .).

In T (VX), we consider the two-sided ideal IPB
, generated by the following elements:[{

X
ξ

i ,X
η

j

}
, Xε

k

] − (ε − η)δjkX
ξ

i − (ε − ξ)δikX
η

j (5)

respectively, for all values of ξ, η, ε = ±1 and i, j = 1, 2, . . . . IX is the unity of the tensor
algebra. [A,B] stands for A⊗B −B ⊗A and {A,B} stands for A⊗B +B ⊗A, where A and
B are arbitrary elements of the tensor algebra T (VX). We now have the following definition.

Definition 2.1. The parabosonic algebra in PB is the quotient algebra of the tensor algebra
T (VX) of VX with the ideal IPB

:

PB = T (VX)/IPB
.

We denote by πPB
: T (VX) → PB the canonical projection. The elements X+

i , X−
j , IX, where

i, j = 1, 2, . . . and IX is the unity of the tensor algebra, are the generators of the tensor algebra
T (VX). The elements πPB

(
X+

i

)
, πPB

(X−
j ), πPB

(IX), i, j = 1, . . . are a set of generators of the
parabosonic algebra PB, and they will be denoted by B+

i , B−
j , I for i, j = 1, 2, . . . respectively,

from now on. πPB
(IX) = I is the unity of the parabosonic algebra. The generators of the

parabosonic algebra satisfy equation (4).
Based on the above definitions we prove now the following proposition.

Proposition 2.2. The parabosonic algebra PB is a Z2-graded associative algebra with its
generators B±

i for i, j = 1, 2, . . . , being odd elements.

Proof. It is obvious that the tensor algebra T (VX) is a Z2-graded algebra with the monomials
being homogeneous elements. If x is an arbitrary monomial of the tensor algebra, the degree
of x is denoted by |x| = deg x. Then |x| = deg (x) = 0, namely x is an even element, if
it constitutes of an even number of factors (an even number of generators of T (VX)) and
|x| = deg (x) = 1, namely x is an odd element, if it constitutes of an odd number of factors
(an odd number of generators of T (VX)). The generators X+

i , X−
j , i, j = 1, . . . , n are odd

elements in the above-mentioned gradation. In view of the above description, we can easily
conclude that the Z2-gradation of the tensor algebra is immediately ‘transferred’ to the algebra
PB. The ideal IPB

is an homogeneous ideal of the tensor algebra, since it is generated by
homogeneous elements of T (VX). Consequently, the projection homomorphism πPB

is an
homogeneous algebra map of degree zero, or we can equivalently say that it is an even algebra
homomorphism. �

The rise of the theory of quasitriangular Hopf algebras from the mid-1980s [5] and
thereafter and especially the study and abstraction of their representations (see [23, 24, 27]
and references therein) has provided us with a novel understanding of the notion and the
properties of G-graded algebras, where G is a finite Abelian group. We are restricting
ourselves to the simplest case where G = Z2 and we denote by {1, g} the elements of the
Z2 group (written multiplicatively). An algebra A being a Z2-graded algebra (in the physics
literature the term superalgebra is also of widespread use) is equivalent to saying that A is a
CZ2-module algebra, via the Z2-action determined by

1 � a = a and g � a = (−1)|a|a
for any a homogeneous in A and |a| its degree.
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What we actually mean is that A, apart from being an algebra is also a CZ2-module and
at the same time the structure maps of A (i.e., the multiplication and the unity map which
embeds the field into the center of the algebra) are CZ2-module maps, which is nothing else
but homogeneous linear maps of degree 0 (or even linear maps). Stated more generally, the
G-grading of A can be equivalently described in terms of a specific action of the finite Abelian
group G on A, thus in terms of a specific action of the CG group algebra on A. This is not
something new. In fact such ideas already appear in works such as [3, 40].

In [24, 27], the construction of the tensor products of G-graded objects is presented as a
consequence of the quasitriangularity of the CG group Hopf algebra (for G a finite Abelian
group, see [39]) or in other words: as a consequence of the braiding of the monoidal category
CGM (category of CG-modules).

It is well known that for any group G, the group algebra CG equipped with the maps:

�(z) = z ⊗ z ε(z) = 1 S(z) = z−1

for any z ∈ G, becomes a Hopf algebra. Focusing again on the special case G = Z2, the fact
that A is a Z2-graded algebra is equivalently described by saying that A is an algebra in the
braided monoidal category of CZ2-modules CZ2M. In this case the braiding is induced by the
non-trivial quasitriangular structure of the CZ2 Hopf algebra i.e. by the non-trivial R-matrix:

RZ2 = 1
2 (1 ⊗ 1 + 1 ⊗ g + g ⊗ 1 − g ⊗ g). (6)

We digress here for a moment, to recall that (see [23, 24] or [27]) if (H,RH ) is a
quasitriangular Hopf algebra through the R-matrix RH = ∑

R
(1)
H ⊗ R

(2)
H , then the category of

modules HM is a braided monoidal category, where the braiding is given by a natural family
of isomorphisms 
V,W : V ⊗ W ∼= W ⊗ V, given explicitly by


V,W (v ⊗ w) =
∑ (

R
(2)
H � w

) ⊗ (
R

(1)
H � v

)
(7)

for any V,W ∈ obj (HM). By v,w we denote any elements of V,W respectively.
Combining equations (6) and (7) we immediately get the braiding in the CZ2M category:


V,W (v ⊗ w) = (−1)|v||w|w ⊗ v. (8)

This is a symmetric braiding, since


V,W ◦ 
W,V = Id

so we actually have a symmetric monoidal category CZ2M, rather than a truly braided one.
The really important thing about the existence of the braiding (8) is that it provides us

with an alternative way of forming tensor products of Z2-graded algebras. If A and B are
superalgebras with multiplications:

mA : A ⊗ A → A and mB : B ⊗ B → B

respectively, then the super vector space A ⊗ B (with the obvious Z2-gradation) is equipped
with the associative multiplication

(mA ⊗ mB)(Id ⊗ 
B,A ⊗ Id) : A ⊗ B ⊗ A ⊗ B −→ A ⊗ B (9)

given equivalently by

(a ⊗ b)(c ⊗ d) = (−1)|b||c|ac ⊗ bd

for b, c homogeneous in B,A respectively. The tensor product becomes a superalgebra (or
equivalently an algebra in the braided monoidal category of CZ2-modules CZ2M) which we
will denote by A⊗ B and call the braided tensor product algebra from now on.

Let us close this description with two important remarks. First, we stress that in (9) both
superalgebras A and B are viewed as CZ2-modules and as such we have B ⊗ A ∼= A ⊗ B

5
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through b ⊗ c �→ (−1)|c||b|c ⊗ b. Second we underline that the tensor product (9) had been
already known from the past [2] but rather as a special possibility of forming tensor products
of superalgebras than as an example of the more general conceptual framework of the braiding
applicable not only to superalgebras but to any G-graded algebra (G a finite Abelian group)
as long as CG is equipped with a non-trivial quasitriangular structure or equivalently [27, 39],
a bicharacter on G is given.

3. Super-Hopf structure of parabosons: a braided group

The notion of G-graded Hopf algebra, for G a finite Abelian group, is not a new one neither in
physics nor in mathematics. The idea appears already in the work of Milnor and Moore [25],
where we actually have Z-graded Hopf algebras. On the other hand, universal enveloping
algebras of Lie superalgebras are widely used in physics and they are examples of Z2-graded
Hopf algebras (see, e.g., [20, 38]). These structures are strongly resemblant of Hopf algebras
but they are not Hopf algebras at least in the ordinary sense.

Restricting again to the simplest case where G = Z2 we briefly recall this idea: an
algebra A being a Z2-graded Hopf algebra (or super-Hopf algebra) means first of all that A is a
Z2-graded associative algebra (or superalgebra). We now consider the braided tensor product
algebra A⊗ A. Then A is equipped with a coproduct

� : A → A⊗ A (10)

which is an superalgebra homomorphism from A to the braided tensor product algebra A⊗ A:

�(ab) =
∑

(−1)|a2||b1|a1b1 ⊗ a2b2 = �(a) · �(b)

for any a, b in A, with �(a) = ∑
a1 ⊗ a2,�(b) = ∑

b1 ⊗ b2, and a2, b1 homogeneous.
We emphasize here that this is exactly the central point of difference between the ‘super’
and the ‘ordinary’ Hopf algebraic structure: in an ordinary Hopf algebra H we should have a
coproduct � : H → H ⊗ H which should be an algebra homomorphism from H to the usual
tensor product algebra H ⊗ H.

Similarly, A is equipped with an antipode S : A → A which is not an algebra anti-
homomorphism (as it should be in an ordinary Hopf algebra) but a superalgebra anti-
homomorphism (or ‘twisted’ anti-homomorphism, or braided anti-homomorphism) in the
following sense (for any homogeneous a, b ∈ A):

S(ab) = (−1)|a||b|S(b)S(a). (11)

The rest of the axioms which complete the super-Hopf algebraic structure (i.e., coassociativity,
counity property and compatibility with the antipode) have the same formal description as in
ordinary Hopf algebras.

Once again, the abstraction of the representation theory of quasitriangular Hopf algebras
provides us with a language in which the above description becomes much more compact: we
simply say that A is a Hopf algebra in the braided monoidal category of CZ2-modules CZ2M
or a braided group where the braiding is given in equation (8). What we actually mean is that
A is simultaneously an algebra, a coalgebra and a CZ2-module, while all the structure maps
of A (multiplication, comultiplication, unity, counity and the antipode) are also CZ2-module
maps and at the same time the comultiplication � : A → A⊗ A and the counit are algebra
morphisms in the category CZ2M (see also [23, 24] or [27] for a more detailed description).

We proceed now to the proof of the following proposition which establishes the super-Hopf
algebraic structure of the parabosonic algebra PB.

6
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Proposition 3.1. The parabosonic algebra equipped with the even linear maps � : PB →
PB ⊗ PB, S : PB → PB, ε : PB → C, determined by their values on the generators:

�
(
B±

i

) = 1 ⊗ B±
i + B±

i ⊗ 1 ε
(
B±

i

) = 0 S
(
B±

i

) = −B±
i (12)

for i = 1, 2, . . . , becomes a super-Hopf algebra.

Proof. Recall that by definition PB = T (VX)/IPB
. Consider the linear map:

�T : VX → PB ⊗ PB

determined by its values on the basis elements specified by

�T
(
X±

i

) = I ⊗ B±
i + B±

i ⊗ I.

By the universality of the tensor algebra this map is uniquely extended to a superalgebra
homomorphism: �T : T (VX) → PB ⊗ PB. After lengthy algebraic calculations (see the
appendix A we can prove that

�T
([{

X
ξ

i ,X
η

j

}
, Xε

k

] − (ε − η)δjkX
ξ

i − (ε − ξ)δikX
η

j

) = 0 (13)

for all values of ξ, η, ε = ±1 and i, j = 1, 2, . . . . This means that IPB
⊆ ker(�T ),

which in turn implies that �T is uniquely extended to a superalgebra homomorphism:
� : PB → PB ⊗ PB, according to the following (commutative) diagram:

with values on the generators determined by (12).
Proceeding the same way we construct the maps ε, S, as determined in (12).
For the case of ε, we start defining the trivial zero map

εT : Vx → {0} ∈ C

and we (uniquely) extend its definition to a superalgebra homomorphism ε : PB → C

following the commutative diagram:

with values on the generators determined by (12).
In the case of the antipode S we need the notion of the Z2-graded opposite algebra

(or opposite superalgera) P
op

B , which is a superalgebra defined as follows: P
op

B has
the same underlying super vector space as PB, but the multiplication is now defined as
a · b = (−1)|a||b|ba, for all a, b ∈ PB. (On the right-hand side, the product is of course the
product of PB.) We start by defining a linear map

ST : VX → P
op

B

determined by

ST
(
X±

i

) = −B±
i .

This map is (uniquely) extended to a superalgebra homomorphism: ST : T (VX) → P
op

B . Now
we can compute

ST
([{

X
ξ

i ,X
η

j

}
, Xε

k

] − (ε − η)δjkX
ξ

i − (ε − ξ)δikX
η

j

) = 0 (14)

7



J. Phys. A: Math. Theor. 41 (2008) 105203 K Kanakoglou and C Daskaloyannis

for all values of ξ, η, ε = ±1 and i, j = 1, 2, . . . . This means that IPB
⊆ ker(ST ), which in

turn implies that ST is uniquely extended to a superalgebra homomorphism S : PB → P
op

B ,

according to the following commutative diagram:

thus to a superalgebra anti-homomorphism: S : PB → PB, with values on the generators
determined by (12).

Now it is sufficient to verify the rest of the super-Hopf algebra axioms (coassociativity,
counity and the compatibility condition for the antipode) on the generators of PB. This can be
done with straightforward computations. �

Let us note here that the above proposition generalizes a result which—in the case of finite
degrees of freedom—is a direct consequence of the work in [9]. In that work the parabosonic
algebra in 2n generators (n-paraboson algebra) P

(n)
B is shown to be isomorphic to the universal

enveloping algebra of the orthosymplectic Lie superalgebra: P
(n)
B

∼= U(B(0, n)). We present
this accomplishment in detail in section 4. See also the discussion in [16].

4. Lie super-algebraic structure of parabosons: the case of finite degrees of freedom

In this section, we restrict ourselves to the case of the finite degrees of freedom (finite number
of parabosons), in order to recall an important development in the study of the structure of
the parabosonic algebra. We thus consider the parabosonic algebra generated by B+

i , B−
j , I,

for i, j = 1, 2, . . . n where n is a positive integer. The generators satisfy exactly the same
relations as before, determined by (4) or equivalently (5). The difference is that we only have
a finite number of generators now and we will call this algebra the parabosonic algebra in 2n

generators or the n-paraboson algebra from now on. We are going to denote it by P
(n)
B .

It was conjectured [29] that due to the mixing of commutators and anticommutators in
P

(n)
B the proper mathematical ‘playground’ for the study of the structure of P

(n)
B should be

some kind of Lie superalgebra (Z2-graded Lie algebra). Starting in the early 1980s, and using
the recent (by that time) results in the classification of the finite-dimensional simple complex
Lie superalgebras which was obtained by Kac (see [12, 13] but also [19]), Palev managed
to identify the parabosonic algebra with the universal enveloping algebra of a certain simple
complex Lie superalgebra. In [9, 31, 32], Palev shows the following lemma.

Lemma 4.1. In the k-vector space P
(n)
B we consider the k-subspace generated by the set of

elements: {{
B

ξ

i , B
η

j

}
, Bε

k

∣∣ξ, η, ε = ±, i, j, k = 1, . . . , n
}
.

This vector space is a superspace (i.e., a Z2-graded vector space or equivalently: a CZ2-
module).The elements B

ξ

i span the odd subspace and the elements
{
B

ξ

i , B
η

j

}
span the even

subspace.
The above vector space endowed with a bilinear multiplication 〈.., ..〉 whose values are

determined by the values of the anticommutator and the commutator in P
(n)
B , i.e.,〈

B
ξ

i , B
η

j

〉 = {
B

ξ

i , B
η

j

}
and 〈{

B
ξ

i , B
η

j

}
, Bε

k

〉 = [{
B

ξ

i , B
η

j

}
, Bε

k

] = (ε − η)δjkB
ξ

i + (ε − ξ)δikB
η

j

8
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respectively, according to the above-mentioned gradation, is a simple, complex Lie
superalgebra (or Z2-graded Lie algebra) isomorphic to B(0, n).

The elements

− 1
2

{
B−

i , B+
i

}
,

{
B−

i , B+
j

}
,

{
B

ξ

i , B
ξ

j

}
,

(
B

ξ

i

)2
, B

ξ

i

for all values i �= j = 1, 2, . . . n and ξ = ±, constitute a Cartan–Weyl basis of B(0, n).

Note that, according to the above lemma, the elements
{{

B
ξ

i , B
η

j

}∣∣ξ, η = ±, i, j =
1, . . . , n

}
constitute a basis in the even part of B(0, n). This is a subalgebra of B(0, n)

isomorphic to the Lie algebra sp(2n). Its Lie multiplication can be readily deduced from the
above given commutators and reads〈{

B
ξ

i , B
η

j

}
,
{
Bε

k , B
φ

l

}〉 = [{
B

ξ

i , B
η

j

}
,
{
Bε

k , B
φ

l

}] = (ε − η)δjk

{
B

ξ

i , B
φ

l

}
+ (ε − ξ)δik

{
B

η

j , B
φ

l

}
+ (φ − η)δjl

{
B

ξ

i , Bε
k

}
+ (φ − ξ)δil

{
B

η

j , Bε
k

}
.

On the other hand the elements
{
Bε

k

∣∣ε = ±, k = 1, . . . , n
}

constitute a basis of the odd part
of B(0, n).

Note also that B(0, n) in Kac’s notation is the classical simple complex orthosymplectic
Lie superalgebra denoted as osp(1, 2n) in the notation traditionally used by physicists until
then.

Based on the above observations, Palev finally proves the following proposition.

Proposition 4.2. The parabosonic algebra in 2n generators is isomorphic to the universal
enveloping algebra of the classical simple complex Lie superalgebra B(0, n) (according to
the classification of the simple complex Lie superalgebras given by Kac), i.e.,

P
(n)
B

∼= U(B(0, n)).

Lie superalgebras are exactly the algebraic structures underlying the idea of
supersymmetry. The above-mentioned proposition thus indicates a link between parafield
theories and supersymmetry. For a similar discussion one should also see [34].

Proposition 4.2 also indicates that in the case of the finite degrees of freedom, the
representation theory of the parabosonic algebra P

(n)
B coincides with the representation theory

of the orthosymplectic Lie superalgebra osp(1/2n) [14].
In the case of the finite degrees of freedom, the super-Hopf structure of the parabosonic

algebra P
(n)
B can be deduced from the fact that the universal enveloping algebra U(L) of

any Lie superalgebra L is an super-Hopf algebra. In the case of the infinite degrees of
freedom, the parabosonic algebra is referred to the bibliography [30] to be also the universal
enveloping algebra of some Lie superalgebra. Let us stress here, however, that our proof of
proposition 3.1 does not make use of any kind of underlying Lie superalgebraic structure for
either the P

(n)
B or the PB algebras.

5. Ordinary Hopf structures in parabosons

5.1. Review of the bosonization technique

A general scheme for transforming a Hopf algebra A in the braided monoidal category HM
(where H is a quasitriangular Hopf algebra) into an ordinary one, namely the smash product
Hopf algebra A � H, such that the category of braided modules of A and the category of
(ordinary) modules of A�H are equivalent, has been developed in the original reference [22],
see also [23, 24, 27]. The technique is called bosonization, the term coming from physics. This

9
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technique uses ideas developed by Molnar in [26] and by Radford in [36], which guarantee
the compatibility between an algebraic and a coalgebraic structure in a tensor product [26] or
even in a smash product [36], in order for it to become a bialgebra and finally a Hopf algebra.
It is also presented and applied in [1, 7, 8]. For clarity reasons, we give a compact review the
main points of the above method.

In general, A being a Hopf algebra in a category, means that A apart from being an
algebra and a coalgebra, is also an object of the category and at the same time its structure
maps (commultiplication, antipode etc) are morphisms in the category. In particular, if H is
some quasitriangular Hopf algebra, A being a Hopf algebra in the braided monoidal category
HM, means that the H-module A is an algebra in HM (or H-module algebra) and a coalgebra
in HM (or H-module coalgebra) and at the same time �A and εA are algebra morphisms in
the category HM. (For more details on the above definitions one may consult for example
[23, 24] or [27].)

Since A is an H-module algebra we can form the cross product algebra A�H (also called:
smash product algebra) which as a k-vector space is A ⊗ H (i.e., we write a � h ≡ a ⊗ h for
every a ∈ A, h ∈ H ), with multiplication given by

(b ⊗ h)(c ⊗ g) =
∑

b(h1 � c) ⊗ h2g (15)

for all b, c ∈ A and h, g ∈ H, the ⊗ the usual tensor product and �(h) = ∑
h1 ⊗ h2.

On the other hand, A is a (left) H-module coalgebra with H, which is quasitriangular
through the R-matrix RH = ∑

R
(1)
H ⊗ R

(2)
H . Quasitriangularity switches the (left) action of H

on A into a (left) coaction ρ : A → H ⊗ A through

ρ(a) =
∑

R
(2)
H ⊗ (

R
(1)
H � a

)
(16)

and A endowed with this coaction becomes (see [23, 24]) a (left) H-comodule coalgebra or
equivalently a coalgebra in HM (meaning that �A and εA are (left) H-comodule morphisms,
see [27]).

We recall here (see [23, 24]) that when H is a Hopf algebra and A is a (left) H-comodule
coalgebra with the (left) H-coaction given by ρ(a) = ∑

a(1) ⊗ a(0), one may form the cross
coproduct coalgebra A�H, which as a k-vector space is A⊗H (i.e., we write a �h ≡ a ⊗h

for every a ∈ A, h ∈ H ), with comultiplication given by

�(a ⊗ h) =
∑

a1 ⊗ a
(1)
2 h1 ⊗ a

(0)
2 ⊗ h2 (17)

and counit ε(a ⊗ h) = εA(a)εH (h). (In the above, �A(a) = ∑
a1 ⊗ a2 and we use in the

elements of A upper indices included in parenthesis to denote the components of the coaction
according to the Sweedler notation, with the convention that a(i) ∈ H for i �= 0.)

Now we proceed by applying the above-described construction of the cross coproduct
coalgebra A�H, with the special form of the (left) coaction given by equation (16). Replacing
thus equation (16) into equation (17) we get for the special case of the quasitriangular Hopf
algebra H the cross coproduct comultiplication:

�(a ⊗ h) =
∑

a1 ⊗ R
(2)
H h1 ⊗ (

R
(1)
H � a2

) ⊗ h2. (18)

Finally we can show that the cross product algebra (with multiplication given by (15)) and
the cross coproduct coalgebra (with comultiplication given by (18)) fit together and form a
bialgebra (see [23, 24, 26, 27, 36]). This bialgebra, furnished with an antipode

S(a ⊗ h) = (SH (h2))u(R(1) � SA(a)) ⊗ S(R(2)h1) (19)

where u = ∑
SH (R(2))R(1), and SA the (braided) antipode of A, becomes (see [23]) an

ordinary Hopf algebra. This is the smash product Hopf algebra denoted by A � H.

10
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Apart from the above-described construction, it is worth mentioning two more important
points proved in [22]. First, it is shown that if H is triangular and A is quasitriangular in the
category HM, then A � H is (ordinarily) quasitriangular. Second, it is shown that the braided
modules of the original braided Hopf algebra A (A-modules in HM, where A is an algebra
in HM) and the (ordinary) modules of the ‘bosonized’ (ordinary) Hopf algebra A � H are in
a bijective correspondence, providing thus an equivalence of categories. The category of the
braided modules of A (A-modules in HM) where the braiding is given by a natural family of
isomorphisms 
V,W : V ⊗ W ∼= W ⊗ V, stated explicitly by


V,W (v ⊗ w) =
∑ (

R
(2)
H � w

) ⊗ (
R

(1)
H � v

)
(20)

for any V,W ∈ obj (HM) (by v,w we denote any elements of V,W respectively), is
equivalent to the category of the (ordinary) modules of A � H. Let us stress here that from
the mathematicians viewpoint, this does not prove that we have a Morita equivalence, since
such a kind of equivalence would presuppose the whole category of modules over A and not
its subcategory of braided modules.

Let us close this review of the bosonization technique, with a note on terminology. The
term ‘bosonization’ was first introduced by Majid in [22]. It is coming from physics and it
stems from the—widespread among physicists—point of view which considers the bosonic
algebra to be a quotient algebra of the universal enveloping algebra of the Heisenberg Lie
algebra, with its elements thus being even or: ungraded elements.

In the case that H = CG where G is a finite Abelian group, the Hopf algebra in CGM is
just a G-graded Hopf algebra in the sense of [20, 27] or [38]. The result of the bosonization
technique in this case is the construction of an ordinary Hopf algebra A � CG which absorbs
the grading and whose elements are ungraded or ‘bosonic’ elements. This is the original
motivation which led Majid to the use of the term bosonization (see also [23, 24]).

Finally, let us note that for another use of the term bosonization, which is technically
reminiscent of the above but it is not explicitly related to the Hopf structure, one should also
see [35].

5.2. Bosonization of PB using the smash product

In the special case that A is some super-Hopf algebra, then H = CZ2, equipped with its non-
trivial quasitriangular structure, formerly mentioned. In this case, the technique simplifies and
the ordinary Hopf algebra produced is the smash product Hopf algebra A � CZ2. The grading
in A is induced by the CZ2-action on A:

1 � a = a, g � a = (−1)|a|a (21)

for a homogeneous in A. Utilizing the non-trivial R-matrix Rg and using equations (6) and
(16) we can readily deduce the form of the induced CZ2-coaction on A:

ρ(a) = g|a| ⊗ a ≡
{

1 ⊗ a, a : even
g ⊗ a, a : odd.

(22)

Let us note here that instead of invoking the non-trivial quasitriangular structure Rg we could
alternatively extract the (left) coaction (22) utilizing the self-duality of the CZ2 Hopf algebra.
For any Abelian group G a (left) action of CG coincides with a (right) action of CG. On the
other hand, for any finite group, a (right) action of CG is the same thing as a (left) coaction of
the dual Hopf algebra (CG)∗. Since CZ2 is both finite and Abelian and hence self-dual in the
sense that CZ2 ∼= (CZ2)

∗ as Hopf algebras, it is immediate to see that the (left) action (21)
and the (left) coaction (22) are virtually the same thing.

11
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The above-mentioned action and coaction enable us to form the cross product algebra
and the cross coproduct coalgebra according to the preceding discussion which finally form
the smash product Hopf algebra A � CZ2. The grading of A, is ‘absorbed’ in A � CZ2, and
becomes an inner automorphism:

gag = (−1)|a|a

where we have identified a � 1 ≡ a and 1 � g ≡ g in A � CZ2, and a is the homogeneous
element in A. This inner automorphism is exactly the adjoint action of g on A � CZ2 (as
an ordinary Hopf algebra). The following proposition is proved—as an example of the
bosonization technique—in [23]:

Proposition 5.1. Corresponding to every super-Hopf algebra A there is an ordinary Hopf
algebra A � CZ2, its bosonization, consisting of A extended by adjoining an element g with
relations, coproduct, counit and antipode:

g2 = 1 ga = (−1)|a|ag �(g) = g ⊗ g �(a) = ∑
a1g

|a2| ⊗ a2

S(g) = g S(a) = g−|a|S(a) ε(g) = 1 ε(a) = ε(a)
(23)

where S and ε denote the original maps of the super-Hopf algebra A.

In the case that A is super-quasitriangular via the R-matrix

R =
∑

R(1) ⊗ R(2)

then the bosonized Hopf algebra A � CZ2 is quasitriangular (in the ordinary sense) via the
R-matrix:

Rsmash = RZ2

∑
R(1)g|R(2)| ⊗ R(2).

Moreover, the representations of the bosonized Hopf algebra A � CZ2 are precisely the
super-representations of the original superalgebra A.

The application of the above proposition in the case of the parabosonic algebra PB

is straightforward, we immediately get its bosonized form PB(g) which by definition is
PB(g) ≡ PB �CZ2. Utilizing equations (12) which describe the super-Hopf algebraic structure
of the parabosonic algebra PB, and replacing them into equations (23) which describe the
ordinary Hopf algebra structure of the bosonized superalgebra, we get after straightforward
calculations the explicit form of the (ordinary) Hopf algebra structure of PB(g) ≡ PB � CZ2

which reads

�
(
B±

i

) = B±
i ⊗ 1 + g ⊗ B±

i �(g) = g ⊗ g ε
(
B±

i

) = 0 ε(g) = 1

S
(
B±

i

) = B±
i g = −gB±

i S(g) = g g2 = 1
{
g, B±

i

} = 0
(24)

where i = 1, 2, . . . and we have again identified B±
i � 1 ≡ B±

i and 1 � g ≡ g in PB � CZ2.

Finally, we can easily check that since CZ2 is triangular (via RZ2 ) and PB is super-
quasitriangular (trivially since it is super-cocommutative) it is an immediate consequence of
the above proposition that PB(g) is quasitriangular (in the ordinary sense) via the R-matrix:

Rsmash = 1
2 (1 � 1 ⊗ 1 � 1 + 1 � 1 ⊗ 1 � g + 1 � g ⊗ 1 � 1 − 1 � g ⊗ 1 � g) (25)

which under the above-mentioned identification: 1 � g ≡ g completely coincides with the
R-matrix RZ2 given in equation (6).

12
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5.3. Bosonization of PB using two additional operators K±

Let us describe now a different construction (see also [4, 16] for the case of the finite degrees of
freedom and [15] for the general case), which achieves the same object, i.e. the determination
of an ordinary Hopf structure for the parabosonic algebra PB.

Proposition 5.2. Corresponding to the super-Hopf algebra PB there is an ordinary Hopf
algebra PB(K±), consisting of PB extended by adjoining two elements K+,K− with relations,
coproduct, counit and antipode:

�
(
B±

i

) = B±
i ⊗ 1 + K± ⊗ B±

i �(K±) = K± ⊗ K±

ε
(
B±

i

) = 0 ε(K±) = 1

S
(
B±

i

) = B±
i K∓ S(K±) = K∓

K+K− = K−K+ = 1
{
K+, B±

i

} = 0 = {
K−, B±

i

}

(26)

for all values i = 1, 2, . . . .

Proof. Consider the complex vector space C
〈
X+

i , X−
j , K±〉

freely generated by the elements
X+

i , X−
j , K+,K− where i = 1, 2, . . . . Denote T

(
X+

i , X−
j , K±)

its tensor algebra. In the tensor
algebra we denote IBK the ideal generated by all the elements of the form (5) together with
all elements of the form: K+K− − 1,K−K+ − 1,

{
K+, X±

i

}
,
{
K−, X±

i

}
, for all values of

i = 1, 2, . . . . We define

PB(K±) = T
(
X+

i , X−
j , K±)/

IBK.

We denote by B±
i , K± where i = 1, 2, . . . the images of the generators X±

i , K±, i = 1, 2, . . .

of the tensor algebra, under the canonical projection. These are a set of generators of PB(K±).

Consider the linear map

�T : C
〈
X+

i , X−
j , K±〉 → PB(K±) ⊗ PB(K±)

determined by

�T
(
X±

i

) = B±
i ⊗ 1 + K± ⊗ B±

i

�T (K±) = K± ⊗ K±.

By the universality property of the tensor algebra, this map is uniquely extended to an algebra
homomorphism:

�T : T
(
X+

i , X−
j , K±) → PB(K±) ⊗ PB(K±).

We emphasize that the usual tensor product algebra PB(K±) ⊗ PB(K±) is now considered, with
multiplication (a ⊗ b)(c ⊗ d) = ac ⊗ bd for any a, b, c, d ∈ PB(K±). Now we can trivially
verify that

�T
({

K±, X±
i

}) = �T (K+K− − 1) = �T (K−K+ − 1) = 0. (27)

After lengthy algebraic calculations we also get

�T
([{

X
ξ

i ,X
η

j

}
, Xε

k

] − (ε − η)δjkX
ξ

i − (ε − ξ)δikX
η

j

) = 0. (28)

The calculations are carried in the same spirit of the calculation found in the appendix A but
we note that this time we use the comultiplication stated in equation (26) and the usual tensor

13
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product algebra PB(K±) ⊗ PB(K±) is considered instead of the braided tensor product algebra
PB(K±) ⊗ PB(K±) used in Appendix appendix A.

Relations (27) and (28) mean that IBK ⊆ ker(�T ) which in turn implies that �T is
uniquely extended to an algebra homomorphism from PB(K±) to the usual tensor product
algebra PB(K±) ⊗ PB(K±), with the values on the generators determined by (26), according to
the following (commutative) diagram:

Following the same procedure, we construct an algebra homomorphism ε : PB(K±) → C and
an algebra antihomomorphism S : PB(K±) → PB(K±) which are completely determined by
their values on the generators of PB(K±) as given in (26). Note that in the case of the antipode
we start by defining a linear map ST from C

〈
X+

i , X−
j , K±〉

to the opposite algebra P
op

B(K±), with
values determined by ST

(
X±

i

) = B±
i K∓ and ST (K±) = K∓. Following the above-described

procedure, we verify that IBK ⊆ ker(ST ), thus resulting with an algebra anti-homomorphism:

S : PB(K±) → PB(K±)

with values on the generators determined by (26).
Now it is sufficient to verify the rest of the Hopf algebra axioms (i.e., coassociativity of �,

counity property for ε, and the compatibility condition which ensures us that S is an antipode)
on the generators of PB(K±). This can be done with straightforward computations (see [4]). �

Let us note here that the initiation for the above-mentioned construction lies in the case of
the finite degrees of freedom: if we consider the parabosonic algebra in 2n generators (n-
paraboson algebra) and denote it by P

(n)
B , it is possible to construct explicit realizations of the

elements K+ and K− in terms of formal power series, such that the relations specified in (26)
hold. The construction is briefly (see also [4]) as follows: we define

N =
n∑

i=1

Nii = 1

2

n∑
i=1

{
B+

i , B−
i

}

We inductively prove

NmB±
i = B±

i (N ± I )m .

For any entire complex function f (z) we get

f (N ) B±
i = B±

i f (N + I ) .

We now introduce the following elements:

K+ = exp(iπN ), K− = exp(−iπN )

then we get {
K+, B±

i

} = 0,
{
K−, B±

i

} = 0. (29)

A direct application of the Baker–Campbell–Hausdorff formula leads also to

K+K− = K−K+ = 1 (30)

which completes the statement.
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6. Discussion

Several points which deserve to be discussed stem from the constructions of the preceding
paragraphs.

First of all we should mention that an analogous treatment regarding the (super-) algebraic
and the (super-) Hopf algebraic structure can be given for the parafermionic algebras and for
mixed systems of paraparticles as well. The parafermionic algebra in finite degrees of freedom
has been shown [18, 37], to be isomorphic to the universal enveloping algebra of the Lie algebra
Bn = so(2n+1) and thus an ordinary Hopf algebra [4], consequently the grading does not seem
to play an important role in its structure. On the other hand, algebras which describe mixed
systems of paraparticles such as the relative parabose or the relative parafermi sets (see [11]
for their description) have been shown to be Z2-graded (see [33]) or Z2 ×Z2-graded (see [43])
algebras respectively. It would thus be an interesting idea to apply similar techniques to these
algebras and obtain results about their braided representations and their tensor products, and
about their super-Hopf structure and their bosonized forms as well. Of course such questions
inevitably involve questions of pure mathematical interest, such as the possible quasitriangular
structures (and thus the possible braidings) for a Z2 × Z2-graded algebra, which up to our
knowledge have not yet been solved in general (see [39] for a relevant discussion).

Let us note here that the super-Hopf algebraic structure of the parabosonic algebra
established in section 3 has an application: it has recently been shown [17] that using the
results of proposition 3.1, one may obtain the construction of the parabosonic Fock-like
representations corresponding to an arbitrary value of the positive integer p (see [11]) as
irreducible submodules of the braided tensor product representations between p-copies of the
first Fock-like representation (corresponding to the value of p = 1). The super-Hopf algebraic
structure of the parabosonic algebra is essential in this process and leads us to a purely braided
interpretation of the Green ansatz for parabosons (see [17] for a more detailed description of
the method).

Regarding now the results of the last section, i.e., the ‘bosonized’ variants PB(g), PB(K±)

of the parabosonic algebras, various questions can be posed.
From the point of view of the structure, an obvious question arises: while PB(g) is a

quasitriangular Hopf algebra through the R-matrix, RZ2 given in equation (6), there is yet
no suitable R-matrix for the Hopf algebra PB(K±). Thus the question of the quasitriangular
structure of PB(K±) is open.

On the other hand, regarding representations, we have already noted that the super
representations of PB (Z2-graded modules of PB or equivalently: PB-modules in CZ2M)
are in ‘1–1’ correspondence with the (ordinary) representations of PB(g). The construction of
the representation of PB(g) which corresponds to any given representation of PB can be done
straightforwardly [22, 23]. Although we do not have such a strong result for the representations
of PB(K±), the construction in the end of section 5 for the case of finite degrees of freedom,
enables us to uniquely extend the Fock-like [11] representations of P

(n)
B to representations

of P
(n)

B(K±). Since the Fock-like representations of PB are unique up to unitary equivalence
(see the proof in [11] or [28]), this is a point which deserves to be discussed analytically in
a forthcoming work. We must note here that this question has to be discussed in connection
with the explicit construction of the parabosonic Fock-like representations which is yet another
open problem (see the discussion in [17] or [21]).

Finally, it will be an interesting thing to study the (ordinary) tensor products of
representations of PB(g) and PB(K±), through the comultiplications stated in (24) and (26)
respectively, in comparison with the (braided) tensor products of (braided) representations of
PB through the comultiplication stated in (12). Specifically, it will be of interest to answer
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the question of whether the ordinary Hopf structures presented in the last section of this paper
are capable of generating essentially new representations of the parabosonic algebra: the
possibility that the reduction of (ordinary) tensor product representations of either PB(g) or
PB(K±) might lead to submodules non-equivalent to the parabosonic Fock-like representations
(the latter emerge as irreducible submodules in the reduction of the braided tensor product
representations of PB) is an intriguing one and deserves to be discussed analytically in a
forthcoming work.
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Appendix. Proof of equation (13)

Using the fact that the generators of the parabosonic algebra PB are odd elements and
the multiplication in the braided tensor product algebra PB ⊗ PB is given by (9), we have(
I ⊗ B

ξ

i

)(
B

η

j ⊗ I
) = −B

η

j ⊗ B
ξ

i while
(
B

η

j ⊗ I
)(

I ⊗ B
ξ

i

) = B
η

j ⊗ B
ξ

i in PB ⊗ PB. Now we
compute

�T
({

X
ξ

i ,X
η

j

}) = �T
(
X

ξ

i X
η

j + X
η

j X
ξ

i

) = �T
(
X

ξ

i

)
�T

(
X

η

j

)
+ �T

(
X

η

j

)
�T

(
X

ξ

i

)
= (

B
ξ

i ⊗ I + I ⊗ B
ξ

i

)(
B

η

j ⊗ I + I ⊗ B
η

j

)
+

(
B

η

j ⊗ I + I ⊗ B
η

j

)(
B

ξ

i ⊗ I + I ⊗ B
ξ

i

)
= B

ξ

i B
η

j ⊗ I + B
ξ

i ⊗ B
η

j − B
η

j ⊗ B
ξ

i + I ⊗ B
ξ

i B
η

j + +B
η

j B
ξ

i ⊗ I

+ B
η

j ⊗ B
ξ

i − B
ξ

i ⊗ B
η

j + I ⊗ B
η

j B
ξ

i = I ⊗ {
B

ξ

i , B
η

j

}
+

{
B

ξ

i , B
η

j

} ⊗ I.

So we have proved that for the even elements
{
X

ξ

i ,X
η

j

}
(for all values of ξ, η,= ±1 and

i, j = 1, 2, . . .) of the tensor algebra T (VX) we have

�T
({

X
ξ

i ,X
η

j

}) = {
B

ξ

i , B
η

j

} ⊗ I + I ⊗ {
B

ξ

i , B
η

j

}
(A.1)

Using result (A.1) and the fact that
{
X

ξ

i ,X
η

j

}
(for all values of ξ, η,= ±1 and i, j = 1, 2, . . .)

are even elements, we get

�T
([{

X
ξ

i ,X
η

j

}
, Xε

k

]) = �T
({

X
ξ

i ,X
η

j

})
�T

(
Xε

k

) − �T
(
Xε

k

)
�T

({
X

ξ

i ,X
η

j

})
= ({

B
ξ

i , B
η

j

} ⊗ I + I ⊗ {
B

ξ

i , B
η

j

})(
Bε

k ⊗ I + I ⊗ Bε
k

)
− (

Bε
k ⊗ I + I ⊗ Bε

k

)({
B

ξ

i , B
η

j

} ⊗ I + I ⊗ {
B

ξ

i , B
η

j

})
= {

B
ξ

i , B
η

j

}
Bε

k ⊗ I +
{
B

ξ

i , B
η

j

} ⊗ Bε
k + Bε

k ⊗ {
B

ξ

i , B
η

j

}
+ I ⊗ {

B
ξ

i , B
η

j

}
Bε

k

−Bε
k

{
B

ξ

i , B
η

j

} ⊗ I − Bε
k ⊗ {

B
ξ

i , B
η

j

} − {
B

ξ

i , B
η

j

} ⊗ Bε
k − I ⊗ Bε

k

{
B

ξ

i , B
η

j

}
× [{

B
ξ

i , B
η

j

}
, Bε

k

] ⊗ I + I ⊗ [{
B

ξ

i , B
η

j

}
, Bε

k

]
= (

(ε − η)δjkB
ξ

i + (ε − ξ)δikB
η

j

)) ⊗ I + I ⊗ (
(ε − η)δjkB

ξ

i + (ε − ξ)δikB
η

j

))
= (ε −η)δjk�

T
(
X

ξ

i

)
+x(ε − ξ)δik�

T
(
X

η

j

) = �T
(
(ε −η)δjkX

ξ

i − (ε − ξ)δikX
η

j

))
which finally completes the proof.
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